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Micro-physiological systems (MPS), including organs-on-chips, have emerged as promising screening platforms to bridge A IHC Analysis B TEM Myelination Analysis co- on
the gap between preclinical and clinical success. However, engineering 3D tissues relevant to the nervous system, Week 4 Week 4 < 40- <
especially peripheral nerves (PNs), is challenging because of the complex ultrastructure and necessity of functional o0 o o S T 230 §
outputs, including Schwann-cell myelination and electrophysiology. We have developed a nerve-on-a-chip construct to ézo- F>
culture animal'and human®neural tissue in a dual hydrogel system that promotes axon growth analogous to mature nerve B 10- M o
anatomy. In this study, we have engineered an all-human NerveSim® MPS, derived from human induced pleuripotent stem N £ 58
cell (iPSC) derived sensory neurons (hSNs) and human primary Schwann cells (hSCs). To demonstrate the resulting mature 2,0, .
nerve anatomy, we analyzed neurite outgrowth and Schwann cell migration along neuronal axons, quantified functional | 2 20- S
electrophysiological responses, and conducted ultrastructure analysis of myelinated axons. w B c>>é 20- ’\ =
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P Srapiy hSN-hSC spheroids Fo C 'HEVA“?(IZS'S Figure 7. Electrophysiological measurements over time. Electrophysiology was recorded daily over 3 days of
embedded into L Bs ee dosing with a vehicle (top) and 1000 nM vincristine (bottom). Population level responses are shown using
NerveSim® 5 < 10000~— maximal velocity projection (MVP) traces pooling responses across all electrodes for each NerveSim® sample.
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human NerveSim® construct, showing neurite outgrowth (red) reaching the end of the axon channel, Schwann 2 10 1M Vi 100 nM Vi 1000 nM Vn k3
cells (green) migrating along axon tracks, and myelin (yellow) within the bulb and upper axon channel regions. > Z
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—@_ (B) TEM images of nerve cross-section were stained with osmium tetroxide to show Schwann cell-myelinated e <
axons. (C) Length of expression in immunostained NerveSim® axon channel was quantified using a custom ~ 100
N developed MATLAB script. Results indicate robust neurite length (BlII-Tubulin), Schwann cell migration (5100),
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Figure 1. Schematic of creating a Nerve-on-a-Chip assay. (A) Fabrication: PEG hydrogel scaffolds are crosslinked onto Time after dosin Vincristine Dosing
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Figure 8. Vincristine dose response over 3 days. (A) Human iPSC NerveSim® cultures were grown for 42 days before
dosing with 5 levels of vincristine as well as a vehicle control (water). Electrophysiology was measured daily and the total
electrophysiological activity was quantified between 0 and 1 m/s as a velocity density index (VDI) at each timepoint,
showing dosage dependent decreases at concentrations at 10 nM vincristine and greater. (B) Vincristine dose response
curves at each timepoint showing progressively larger dose dependent decreases in activity compared to the vehicle

control.

permeable Transwell membranes using photolithography. (B) Tissue culture: Coculture hSN-hSC spheroids are inserted
into the inner Matrigel-filled channel and are grown for 28 days in vitro, confined in a 3D space analogous to nerve fiber e
tract. (C) Test metrics: Endpoints include histological endpoints, including immunohistochemistry (IHC) analysis of neurite A - | sy
length and Schwann cell migration, as well as ultrastructure transmission electron microscopy (TEM) analysis of myelin
structure. (D) TEM: TEM images of nerve cross-section stained with osmium tetroxide show Schwann cell-myelinated axon.

Coculture Density Selection

A Spheroid Diameter Analysis B Spheroid Growth Analysis

Week 0 Week 1
600 (before plating in NerveSim®)

- ‘-
.-_' 1'
PS8

Functional Electrophysiology

Dosing  [] Vehicle (H20) [l 1 nMvn [] 100 nM Vn
B Conditions L 0.1 nM vn ] 10nMvn [] 1000 nM vn

A Dosing Conditions [[] vehice  [[] 0.1nMvn ] 1nMmvn [ 10nMvn  [T] 100nMvn [] 1000 nMvn

Medium (0.33-0.66) Fast (0.66-1) Proximal Distal
Kruskal-Wallis, p = 0.42

_ Kruskal-Wallis, p = 0.11 2001 Kruskal-Wallis, p = 0.99 Kruskal-Wallis, p 0. 75
300
150+
0.012 100_
200- >0
O-_ - - - -

(OZH) STT[VEEYN

— C - N
g. 400 . > 2001 kruskal-waliis, p = 0.98 Kruskal-Wallis, p = 0.49
B b M li
s T m------ %
AN NNl Es AR B e
0 200 <300 Kru::;kal-WaIIis, p=0.097 Kruskal-Wallis, p = 0 1030073 8?28: Kruskal-Wallis, p = 0.16 I Kruskal-Wallis, p = 0.53 A
é 0.045 é 100 %
) 220 ol 2 58i++ & - i i i i
o 7| & 200+ Kruskal-Wallis, p = 0.069 Kruskal-Wallis, p = 0.023
0 C =100 2,150 =
# hSN : Low Figure 5. Electrophysiological g - - - - =l 5128: - - - - . i §
#hSC | Low [Medium| High | Low |Medium| High 6- characterization of human NerveSim®. (A) oL —————— - - —
. 300. Kruskal-Wallis, p = 0.0089 Kruskal-Wallis, p = 0. (%10(1)071 2001 Kruskal-wallis, p = 0.12 Kruskal-Wallis, p = 0.33 .
Spheroid Density = AxoSim has developed a custom 24-well 128 s
. . 0.025 1 <
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(hSN-hSC) spheroid diameter analysis at 3D DIVO, before plating in NerveSim® constructs. No significant trends were O electrode arrays (EEAs) in each well. (B) A Y el
observed, and all spheroid conditions remained < 500 um in diameter. (B) IHC Analysis at 3D Week 1; DAPI (grey) staining © 4 M C . close up micrograph of the 10 100- 150- o o 2
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g y cultures display a significant increase in Figure 9. Functional electrophysiological metrics change with vincristine dosing (A) The VDI metric was
IHC Analysis P L __ spontaneous activity with the application of calculated for velocity bins of 0.33-0.66 m/s (medium speed) and 0.66-1 m/s (fast speed) and compared across
S ."_ Blll -Tubulin \ / 1 uM Capsaicin. Increasing spontaneous vincristine dosing conditions and time. High doses (> 1 nM) caused progressive loss of faster responses over the
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Figure 3. Schwann cell migration analysis. (A) IHC Analysis at 3D Week 1; Schwann cells (green) aligned with Time (ms) compound mechanisms based on hig h-th roughput
neuronal axons (red), necessary for the initiation of the myelination process. (B) Schwann cells were exclusively Figure 6. Example of evoked electrophysiological recording from a human NerveSim®. Stimulation at one electrophysiology
labeled with live cell tracking dye (Qdot 705) before coculture spheroid formation. Migration was tracked electrode evokes two distinct time-delayed CAPs, highted in blue and green, on nearby electrodes as the signals
throughout 1 week of 3D growth in NerveSim® with daily fluorescent images. Pairwise images are shown travel at different conduction velocities. 1. Kramer L et al. ALTEX 2020:37(3):350-364
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