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A model for high throughput therapeutic screening of peripheral neuropathy in a
Human 3D Nerve-on-a-Chip microphysiological system
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Introduction
Micro-physiological systems (MPS), including organs-on-chips, have emerged as promising screening platforms to bridge 
the gap between preclinical and clinical success. However, engineering 3D tissues relevant to the nervous system, 
especially peripheral nerves (PNs), is challenging because of the complex ultrastructure and necessity of functional 
outputs, including Schwann-cell myelination and electrophysiology. We have developed a nerve-on-a-chip construct to 
culture animal  and human  neural tissue in a dual hydrogel system that promotes axon growth analogous to mature nerve 
anatomy. In this study, we have engineered an all-human NerveSim® MPS, derived from human induced pleuripotent stem 
cell (iPSC) derived sensory neurons (hSNs) and human primary Schwann cells (hSCs). To demonstrate the resulting mature 
nerve anatomy, we analyzed neurite outgrowth and Schwann cell migration along neuronal axons, quanti�ed functional 
electrophysiological responses, and conducted ultrastructure analysis of myelinated axons. 

Conclusions
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• Histologically, the NerveSim® platform has been shown to 
exhibit crucial aspects of PN physiology and function, 
displaying robust neurite outgrowth of >7mm, Schwann cell 
axonal alignment, and Schwann cell myelination
• Functionally, the NerveSim® platform provides collection of 
data-rich electrophysiological metrics that can provide 
insights into neurotoxicity, neuroprotection, and 
neurorehabilitation 
• Functional electrophysiological measurements provide the 
same quantitative metrics as clinical electrophysiology
• Future screening of multiple compounds with di�erent 
mechanisms will generate a database for predicting 
compound mechanisms based on high-throughput 
electrophysiology
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Figure 1. Schematic of creating a Nerve-on-a-Chip assay. (A) Fabrication: PEG hydrogel sca�olds are crosslinked onto 
permeable Transwell membranes using photolithography. (B) Tissue culture: Coculture hSN-hSC spheroids are inserted 
into the inner Matrigel-�lled channel and are grown for 28 days in vitro, con�ned in a 3D space analogous to nerve �ber 
tract. (C) Test metrics: Endpoints include histological endpoints, including immunohistochemistry (IHC) analysis of neurite 
length and Schwann cell migration, as well as ultrastructure transmission electron microscopy (TEM) analysis of myelin 
structure. (D) TEM: TEM images of nerve cross-section stained with osmium tetroxide show Schwann cell-myelinated axon. 
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Figure 2. Coculture and monoculture spheroid density analysis and selection. (A) Monoculture (hSN) and coculture 
(hSN-hSC) spheroid diameter analysis at 3D DIV0, before plating in NerveSim® constructs. No signi�cant trends were 
observed, and all spheroid conditions remained ≤ 500 µm in diameter. (B) IHC Analysis at 3D Week 1; DAPI (grey) staining 
shows Schwann cell migration out of spheroid body in an axonal pattern. 
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Figure 3. Schwann cell migration analysis. (A) IHC Analysis at 3D Week 1; Schwann cells (green) aligned with 
neuronal axons (red), necessary for the initiation of the myelination process. (B) Schwann cells were exclusively 
labeled with live cell tracking dye (Qdot 705) before coculture spheroid formation. Migration was tracked 
throughout 1 week of 3D growth in NerveSim® with daily �uorescent images. Pairwise images are shown 
stacked. 
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Figure 4. Analysis of NerveSim® samples at 4-weeks maturity. (A) Fluorescent images of immunostained 
human NerveSim® construct, showing neurite outgrowth (red) reaching the end of the axon channel, Schwann 
cells (green) migrating along axon tracks, and myelin (yellow) within the bulb and upper axon channel regions. 
(B) TEM images of nerve cross-section were stained with osmium tetroxide to show Schwann cell-myelinated 
axons. (C) Length of expression in immunostained NerveSim® axon channel was quanti�ed using a custom 
developed MATLAB script. Results indicate robust neurite length (βIII-Tubulin), Schwann cell migration (S100), 
and myelination (MBP) in the NerveSim® axon channel. The total length of the channel is 7.5mm.
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Figure 5. Electrophysiological 
characterization of human NerveSim®. (A) 
AxoSim has developed a custom 24-well 
tissue culture plate with embedded 
electrode arrays (EEAs) in each well.  (B) A 
close up micrograph of the 10 
microelectrodes in each EEA well that can be 
used for recording or current-based 
stimulation. (C) Human iPSC NerveSim® 
cultures display a signi�cant increase in 
spontaneous activity with the application of 
1 µM Capsaicin. Increasing spontaneous 
electrophysiological activity has been 
associated with activation of a pain 
phenotype and indicates robust expression 
of TRPV1 ion channels.
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Longitudinal Electrophysiology

Figure 6. Example of evoked electrophysiological recording from a human NerveSim®. Stimulation at one 
electrode evokes two distinct time-delayed CAPs, highted in blue and green, on nearby electrodes as the signals 
travel at di�erent conduction velocities.

Figure 7. Electrophysiological measurements over time. Electrophysiology was recorded daily over 3 days of 
dosing with a vehicle (top) and 1000 nM vincristine (bottom). Population level responses are shown using 
maximal velocity projection (MVP) traces pooling responses across all electrodes for each NerveSim® sample. 
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Vincristine Dose Response
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Figure 8. Vincristine dose response over 3 days. (A) Human iPSC NerveSim® cultures were grown for 42 days before 
dosing with 5 levels of vincristine as well as a vehicle control (water). Electrophysiology was measured daily and the total 
electrophysiological activity was quanti�ed between 0 and 1 m/s as a velocity density index (VDI) at each timepoint, 
showing dosage dependent decreases at concentrations at 10 nM vincristine and greater. (B) Vincristine dose response 
curves at each timepoint showing progressively larger dose dependent decreases in activity compared to the vehicle 
control.
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Figure 9. Functional electrophysiological metrics change with vincristine dosing (A) The VDI metric was 
calculated for velocity bins of 0.33-0.66 m/s (medium speed) and 0.66-1 m/s (fast speed) and compared across 
vincristine dosing conditions and time. High doses (> 1 nM) caused progressive loss of faster responses over the 
course of 3 days. (B) The VDI metric was calculated based on the distance separating the stimulation electrode 
from the spheroid, breaking data into two groups: proximal (<2.5 mm) and distal (>2.5 mm) groups. High doses 
of vincristine caused rapid loss of distal responses consistent with axonopathy while proximal responses 
persisted for longer time periods.
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